Triphenylphosphonioacetylide: A Species Isoelectronic with Isocyanides

Hans Jürgen Bestmann,* Wilhelm Frank, Claus Moll, Andreas Pohlschmidt, Timothy Clark, and Andreas Göller

In memory of Gerrit L'abbé

We have for some time been interested in "naked" carbon chains such as **1–4**, which are stabilized by donor and acceptor groups.^[1, 2] Carbon chains stabilized by donors and acceptors have an even number of carbon atoms with betaine-like character (**1**, **2**), whereas the corresponding compounds

stabilized with two donors have an odd number of carbons and belong to the heterocumulene ylides (3,4). In the course of this work, questions arose regarding the structure, stability, and reactivity of $\mathbf{5}$, in which the C_2 unit is only stabilized by a single donor without an acceptor. This compound can be described by structures $\mathbf{5a}$ and $\mathbf{5b/5b'}$. The former can be viewed as a triphenylphosphonioacetylide, whereas $\mathbf{5b/5b'}$ would be regarded as (methylenecarbenylidene)triphenylphosphoranes. Compound $\mathbf{5}$ is thus isoelectronic with isocyanides.

We utilized several computational techniques to determine the bond lengths, angles, and charge distribution in **5**: the semiempirical MO packages VAMP6.1^[4] and SPARTAN 4.1.1 ^[5] with the PM3 Hamiltonian operator, ^[6] as well as ab initio ^[7,8] and density functional theory (DFT) ^[9] techniques within Gaussian 94. ^[10] Ab initio and DFT calculations relied on the following methods and basis sets: ^[8] HF/6-31G(d), ^[11] MP2/6-31G(d), ^[12,13] MP2/6-311+G(d,p), and Becke3LYP/6-311+G(d). ^[9] Stationary points were characterized as minima or transition states at the appropriate level of

Fax: Int. code + (49) 9131 85-6864

E-mail: bestmann@organik.uni-erlangen.de

calculation. NMR chemical shifts and coupling constants were calculated by the IGLO method^[14] with DeMon 1.0.^[15] In this case, PW91/IGLO-III//Becke3LYP/6-31G(d) was used for **5**, and PW91/IGLO-III//Becke3LYP/6-311+G(d) for the unsubstituted model compound **6**.

According to semiempirical calculations (Table 1), **5** is linear (P-C_{α}-C_{β} 179.98°). The most important bond lengths are

Table 1. Calculated geometries and energies for 5.

Quantity	PM3	Becke3LYP/6-31G(d)		
C-C[pm]	124.1	126.1		
C-P[pm]	154.8	167.6		
P-C(Ph)[pm]	180.4	183.8		
C-P-C(Ph)[°]	112.3	110.2		
$E_{ m total}$	180.471 ^[a]	$-1112.37540^{[b]}$		
NIMAG ^[c]	0	1		
$ZPE^{[d]}$	175.424 ^[a]	0.28353 ^[b]		

[a] In $kcal \, mol^{-1}$. [b] In Hartree. [c] NIMAG: Number of imaginary frequencies. [d] ZPE: Zero-point energy.

154.8 pm (P–C $_{\alpha}$) and 124.1 pm (C $_{\alpha}$ –C $_{\beta}$); the latter is slightly longer than a C–C triple bond. [16] The PPh $_{3}$ group bears a net positive charge of +1.14 centered on the phosphorus atom (+2.14 on the P atom, –1.00 on all the phenyl rings combined). The most negative site is at C $_{\alpha}$ with a charge of –1.18, whereas C $_{\beta}$ is practically neutral with a charge of +0.04 (Table 2).

Dipole moments for the individual atoms were derived with the help of the natural atomic orbital point charge (NAO-PC) method. [17] These experimentally nonobservable variables are a measure of the anisotropy of the atomic polarizability. The β -carbon atom in **5** has a dipole moment of 2.00 D, one of the largest yet ascertained with this technique. The molecule has essentially C_{3v} symmetry (the planes of the three phenyl rings intersect at angles of 120° at the P-C-C axis).

DFT Becke3LYP/6-31G(d) optimization (with the symmetry constrained to C_{3v}) gives slightly different values (Table 1). The C_{α} – C_{β} and P– C_{α} distances are 126.1 and 167.6 pm, respectively, and these bonds are expected to become somewhat longer upon inclusion of electron correlation. Atomic charges derived from an natural bond orbital (NBO) population analysis (C_{α} : –1.01, C_{β} : +0.02, P: +1.70, PPh₃: +0.99) agree well with those obtained by the NAO-PC method, which can be seen as a confirmation of the effectiveness of semiempirical techniques. Calculation of the normal vibrations for 5 at the Becke3LYP/6-31G(d) level results in one imaginary vibration with a frequency of –53 cm⁻¹. This vibration, which may be a result of numerical errors in the DFT integration, corresponds to a slight bending of the P-C-C unit.

To obtain more information about whether **5** is linear or not, we performed calculations at higher levels on the model compound **6**. H_3P-C_2 was therefore first optimized with C_{3v} symmetry (Table 3). At the RHF/6-31G(d), MP2/6-31G(d), and Becke3LYP/6-311+G(d) levels, this structure proved to be a minimum on the energy hypersurface. Only the structure optimized at the MP2/6-311+G(d,p) level proved to be a second-order saddle point with two imaginary vibrations. Structure **6** was therefore optimized without symmetry constraints (C_1 , Table 3). The resulting geometry deviates

^[*] Prof. Dr. H. J. Bestmann, Dr. W. Frank, Dipl.-Chem. C. Moll, Dr. A. Pohlschmidt, Priv.-Doz. Dr. T. Clark, Dr. A. Göller Institut für Organische Chemie der Universität Erlangen-Nürnberg Henkestrasse 42, D-91054 Erlangen (Germany)

Table 2. Atomic charges for 5 and 6 determined at different levels of theory.

Atom	5 ^[a]	5 ^[b]	6 ^[c]	6 ^[d]	6 ^[e]	6 ^[f]
C_{β}	+0.04	+0.02	-0.04 to +0.03	- 0.11	-0.34	- 0.42
C_{α}	-1.18	-1.01	-0.58 to -0.60	-0.38	-0.16	+0.06
P	+2.14	+1.70	+0.58 to +0.62	+0.40	+0.47	+0.08
H/Ph ^[g]	-1.00	-0.71	-0.06 to $+0.06$	+0.09	+0.03	+0.28

[a] PM3. [b] Becke3LYP/6-31G(d). [c] HF/6-31G(d), HF/6-31+G(d), HF/6-311+G(d,p). [d] MP2/6-31G(d). [e] MP2/6-311+G(d,p). [f] Becke3LYP/6-311+G(d,p). [g] Sum of all residuals on P.

Table 3. Calculated geometries and energies for 6 with various symmetries.

Symmetry	Quantity	RHF/6-31G(d)	MP2/6-31G(d)	MP2/6-311+G(d, p)	Becke3LYP/6-311+G(d)
C_{3v}	C-C[pm]	124.3	127.3	126.9	125.6
	C-P[pm]	164.4	165.3	165.6	165.2
	P-H[pm]	138.8	140.5	140.0	141.1
	C-C-P[°]	180.0	180.0	180.0	180.0
	C-P-H[°]	116.0	116.3	115.6	116.3
	$E_{\text{total}}[\text{Hartree}]$	-418.02689	-418.36887	- 418.46541	- 419.23912
	$NIMAG^{[a]}$	0	0	2	0
	$ZPE^{[b]}$	0.03856	0.03601	0.03541	0.03461
C_1	C-C[pm]	124.3	127.3	127.0	125.7
	C-P[pm]	164.4	165.3	165.7	165.3
	P-H[pm]	138.8	140.5	140.0	141.1
	C-C-P[°]	179.9	179.9	172.1	179.9
	C-P-H[°]	116.0	116.9/116.3	115.5/115.6	116.2
	$E_{\text{total}}[\text{Hartree}]$	-418.02885	-418.36887	-418.46543	- 419.23912
	NIMAG ^[a]	0	0	0	0
	$ZPE^{[b]}$	0.03856	0.03601	0.03569	0.03467

[a] NIMAG: Number of imaginary frequencies. [b] ZPE: Zero-point energy.

slightly from C_s symmetry, and **6** is nonlinear with a P-C-C angle of 172°. We assume that the corresponding angle is similar in **5**.

Calculations at all levels agree that the P-C-C unit can be bent very easily (frequencies $0-100~\rm cm^{-1}$). The difference in energy between **6** with C_{3v} symmetry and **6** with C_1 symmetry is only $0.00002~\rm Hartree~(0.01~\rm kcal~mol^{-1})$ at the MP2/6-311 + G(d,p) level; the nonlinearity should have no experimentally observable consequences. The calculated geometries show short C–C distances (124.3–127.3 pm) that suggest a C–C triple bond, as for the triphenyl compound. The P–C bond lengths (164.4–165.6 pm) are also short and lie in the range of formal P–C double bonds (cf. CH₂=PH 167.5 pm at the MP2/6-31G(d) level). The C-P-C(Ph) angle in the phenyl-substituted compound **5** is, as expected, somewhat smaller than the analogous C-P-H angle in **6**.

Coulson and Mulliken charges are very similar for semiempirical (PM3) and ab initio Hartree–Fock calculations. The phosphorus atom carries less charge in **6** because charge delocalization to the phenyl rings is not possible. Atom C_{β} is essentially neutral, C_{α} negatively charged, and P positive (+0.6 e). Methods that take electron correlation into account (MP2 and DFT) give results with the opposite trends, dependent on the basis set. The changes are most extreme for Becke3LYP/6-311+G(d) calculations: C_{β} now has a partial negative charge (-0.42e), whereas the other atoms are all slightly positive.

The three highest occupied molecular orbitals of 6 (Figure 1) are two almost degenerate orthogonal π orbitals (HOMO and HOMO – 1) with C–C bonding character and

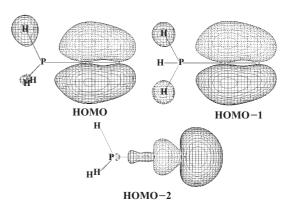


Figure 1. The orbitals HOMO, HOMO – 1, and HOMO – 2 for $\bf 6$ (HF/6-31G(d)//Becke3LYP/6-311+G(d), PSI88[18]).

a σ orbital (HOMO – 2) with a large orbital lobe beyond C_{β} (lone pair) and significant C–C bonding character. Strong polarization of all three MOs leads to an accumulation of electron density at the lone pair and on C_{α} this is not fully reflected in the calculated net atomic charges. In 5, only the ordering of these three MOs is changed (Figure 2). In this case, the lone pair is the HOMO (σ orbital). All these calculations point to the fact that it is not possible to formulate a single Lewis structure for 5 that correctly reproduces the geometry and charge distribution.

To synthesize **5** a solution of the known (silylethinyl)phosphonium salt **7**^[19] in dichloromethane was added dropwise to benzyltrimethylammonium fluoride (**8**) in the same solvent at

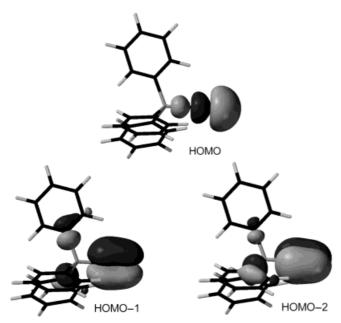


Figure 2. The orbitals HOMO, HOMO - 1, and HOMO - 2 for **5** (PM3/Spartan 4.1.1).

 $-90\,^{\circ}$ C. The low-temperature $(-78\,^{\circ}\text{C})^{31}$ P NMR spectrum of the product showed (apart from small amounts of byproducts) only one signal at $\delta = -13.85$. The signals of starting material **7** at $(\delta(^{31}\text{P}) = 5.22, \ \delta(^{29}\text{Si}) = -9.78)$ had disappeared. Since **5** is stable only at low temperature and

$$Ph_3^{\bigoplus} - C \equiv C - SiMe_3 + PhCH_2^{\bigoplus} Me_3 F^{\ominus} - \longrightarrow 5$$
OTf
7
8

decomposes upon warming to room temperature, all spectra were recorded at $-78\,^{\circ}$ C. Because the 13 C NMR data were not completely clear, we prepared 13 C-enriched $7.^{[20]}$ The corresponding 13 C NMR spectrum showed doublets for C_{α} and C_{β} (C_{α} : $\delta=83.87$, $^{1}J(P,C)=161.7$ Hz; C_{β} : $\delta=133.03$, $^{2}J(P,C)=18.4$ Hz). After desilylation of 7 to 5 the signals for C_{α} and C_{β} appeared at $\delta=83.15$ (d, $^{1}J(P,C)=132.4$ Hz) and 228.90 (d, $^{2}J(P,C)=12.8$ Hz). These data support the results of the calculations extremely well (Table 4). The large downfield shift in the signal for C_{β} in 5 with respect to that for 7 (over 95 ppm) shows that this atom is electron deficient. The observed $P-C_{\alpha}$ coupling constant lies between the usual

Table 4. Structurally relevant spectroscopic data for 5 and 7.

	$\delta(^{31}\text{P})/J(\text{P,C})[\text{Hz}]$	δ (29Si)/J(Si,P)[Hz]	$\delta(^{13}\mathrm{C})/J(\mathrm{P,C})[\mathrm{Hz}]$	$IR[cm^{-1}]$
7 ^[a]	5.22 (s)/-	$-9.78(d)/3.5(^{3}J)$	83.87 (d, C_{α})/161.7 (^{1}J) 133.03 (d, C_{β})/18.4 (^{2}J)	2135
5 [b]	- 13.710 (d)/132.1 (¹ <i>J</i> - 13.693 (d)/12.3 (² <i>J</i>) - 13.687 (s)/-	*	83.15 (d, C_{α})/132.4 (^{1}J) 228.90 (d, C_{β})/12.8 (^{2}J)	1957
5 ^[c]	-45.8	_	61.6 (C_{α})/108.9 (^{1}J) 285.8 (C_{β})/ - 57.0 (^{2}J)	-

[a] Determined in CDCl₃ at room temperature, IR as KBr pellet. [b] Determined in CH₂Cl₂ or CD₂Cl₂ at $-78\,^{\circ}$ C. [c] Calculated at the PW91/IGLO-III/Becke3LYP/6-31G(d) level.

values for alkenyl- (ca. 90 Hz)^[21] and alkinylphosphonium salts (ca. 180 Hz),^[22] indicating some nonlinearity of the molecule in solution.^[23] The ³¹P NMR spectrum of ¹³C-labeled **5** shows (apart from a singlet at -13.687 ppm for the 12 C isotopomer) two doublets at $\delta=-13.693$ and -13.710, which result from coupling of C_α or C_β of the two 13 C isotopomers with the phosphorus atom. The 31 P NMR signal of **5** is shifted upfield, as are those for **4** (R² = C₆H₅)^[2] and other phosphallene ylides.^[24] The IR spectrum of **5** shows a sharp peak at 1957 cm $^{-1}$ (**7**: 2135 cm $^{-1}$); cumulated ylides also absorb in this range.^[23]

Compound **5** reacts with acids HX (**9**) initially to form ethinylphosphonium salts **10**, which could be characterized by 31 P NMR spectroscopy as intermediates between -78 and -30 °C (Scheme 1). A possible insertion into the H–X bond,

Scheme 1. Reaction of $\mathbf{5}$ with $\mathbf{9}$ (X = OMe, Cl, OCOMe) and possible reaction pathways that proceed directly via $\mathbf{10}$ or via carbene intermediate $\mathbf{12}$.

which might be expected on the basis of the carbene structure 5b/5b', is not observed. At about 0°C a further reaction with 9 takes place to give the vinylphosphonium salts 11, which are formed as mixtures with widely differing Z:E isomeric ratios.^[25] We assume that electrophilic attack at the β -carbon atom of 5 occurs to lead to a dynamic back-polarization of electron density from C_{α} to C_{β} . In principle, nucleophilic attack on the negatively charged α -carbon atom might be possible to form the vinylidenecarbenephosphonium salt 12, which would be expected to undergo rapid rearrangement to the ethinylphosphonium salt 10 (Scheme 1).[26] However, in a series of experiments (e.g., reaction with electrophiles in the presence of alkenes) we found no evidence for the formation of carbene 12 or similar intermediates substituted at the α carbon atom. Reaction of 5 with trifluoromethanesulfonic acid methyl ester (13) gives the propinylphosphonium salt 14.

We further investigated whether **5**, which is isoelectronic with isocyanides, undergoes reactions analogous to the Passerini reaction. We therefore treated solutions of **5** at $-78\,^{\circ}$ C with a ketone (**15**) and then at $-40\,^{\circ}$ C with carboxylic acid **17** (Scheme 2), and isolated the corresponding (3-acyloxy-2-oxo-alkylidene)triphenylphosphorane **21** about five hours later (Table 5). We assume that betaine **16** is initially formed and then is protonated by **17** to give alkynylphospho-

$$5 + \underset{R^{1}}{ } \stackrel{\bigcirc}{ } \stackrel{\bigcirc}$$

Scheme 2. Reaction of 5 that resembles the Passerini reaction.

Table 5. Acyl ylides 21 and furanones 22 prepared from 5, ketones, and carboxylic acids.

22

	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	21[%] M.p.[°C]	22[%	o] M.p.[°C]
a	Me	<i>t</i> Bu	p-MeOC ₆ H ₄	40	_	76	89
b	Et	Ph	p-MeOC ₆ H ₄	42	170	82	97
c	Me	Me	$p ext{-MeOC}_6H_4$	45	172	83	93
d	Me	Me	Me	54	146	-	-

nium salt **18**. The carboxylate anion then adds at the position β to phosphorus in a slow reaction at room temperature. The resulting phosphaallene ylide **19** in turn undergoes a proton shift to provide **20**. The reaction sequence is terminated by an acyl shift to give **21**. The similarity between this sequence and the Passerini reaction is clear. Upon heating in benzene or toluene at reflux, acyl ylides **21** undergo an intramolecular Wittig reaction^[28] to yield 2,2,5-trisubstituted 3(2*H*)-furanones **22** (cf. Table 5).

If **7** is desilylated in the presence of triphenylborane (**23**) at $-78\,^{\circ}$ C, (triphenylphosphonioethinyl)triphenylborate (**24**),^[29] which belongs to the phosphonioboratoacetylenes **1**, is formed in 84 % yield. A comparison of the X-ray crystal structure of **24**^[29] with that of **1**,^[1] in which one phenyl is replaced by a

7 + 8 + BPh₃
$$\longrightarrow$$
 Ph₃P \longrightarrow C \equiv C \longrightarrow BPh₃

methyl group, shows no significant differences. The C_{α} – C_{β} distance in **24** (124.3 pm) is slightly greater than that in the analogue (121.6 pm), [1] and both molecules are slightly bent (**24**: P- C_{α} - C_{β} 177°, B- C_{β} - C_{α} 171.3°).

Experimental Section

All operations were carried out under a nitrogen atmosphere and in absolute solvents.

5 (in solution): **8** (169 mg, 1.0 mmol) was dissolved/suspended in CH_2CI_2 (2 mL) and cooled to $-90\,^{\circ}C$. A solution of **7** (509 mg, 1.0 mmol) in CH_2CI_2 (3.5 mL) was added dropwise over a period of 10 min. A deep red solution was obtained, which appeared yellow when viewed as a thin layer. To

complete the reaction, the mixture was stirred for about $10 \, \text{min}$ and allowed to warm to $-78\,^{\circ}\text{C}$. Smaller batches (0.6 mmol) in absolute CD_2Cl_2 were prepared to obtain low-temperature spectra.

21: To a solution of 5 at $-78\,^{\circ}$ C was added an aromatic or aliphatic ketone (16, 5.0 mmol). The mixture was first allowed to react for 10 min at $-78\,^{\circ}$ C, and then maintained for 30 min at $-40\,^{\circ}$ C before an aromatic or aliphatic carboxylic acid (17, 0.8 mmol) was added. The mixture was allowed to warm to room temperature and then stirred for 5 h. From this point on, a nitrogen atmosphere was no longer necessary. The solution was evaporated to 2 mL and washed with Et₂O (10 mL), and the residue was twice precipitated from CH₂Cl₂/Et₂O (little CH₂Cl₂). The oily red residue was discarded. The combined ether phases were evaporated, and the crude acylylides 21 chromatographed over silica gel with ethyl acetate as eluent.

Received: August 15, 1997 [Z10819IE] German version: *Angew. Chem.* **1998**, *110*, 347–351

Keywords: ab initio calculations • betaines • isoelectronic analogues • ylides

- [1] H. J. Bestmann, H. Behl, M. Bremer, Angew. Chem. 1989, 101, 1303; Angew. Chem. Int. Ed. Engl. 1989, 28, 1219.
- [2] H. J. Bestmann, D. Hadawi, H. Behl, M. Bremer, F. Hampel, Angew. Chem. 1993, 105, 1198; Angew. Chem. Int. Ed. Engl. 1993, 32, 1205.
- [3] H. J. Bestmann, Angew. Chem. 1977, 89, 361; Angew. Chem. Int. Ed. Engl. 1977, 16, 349.
- [4] G. Rauhut, A. Alex, J. Chandrasekhar, T. Steinke, W. Sauer, B. Beck, M. Hutter, P. Gedeck, T. Clark, VAMP 6.1, Oxford Molecular Ltd., Magdalen Centre, Oxford Science Park, Sandford-on-Thames, Oxford, OX 4GA, England, 1997.
- [5] SPARTAN Version 4.1.1, Wavefunction Inc., 18401 Von Karman, Suite 370, Irvine, CA 92715, USA.
- [6] J. J. P. Stewart, J. Comput. Chem. 1989, 10, 209, 221; ibid. 1991, 12, 320.
- [7] W. J. Hehre, R. Ditchfield, P. von R. Schleyer, J. A. Pople, ab initio Molecular Orbital Theory, Wiley, New York, 1986.
- [8] J. B. Foresman, A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Pittsburgh, 1993.
- [9] R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford Science Publications, New York, 1989.
- [10] M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, J. R. Robb, T. Cheeseman, G. A. Keith, J. A. Peterson, K. Montgomery, M. A. Raghavachari, V. G. Al-Laham, J. V. Zakrzewski, J. B. Ortiz, J. Foresman, B. B. Cioslowski, A. Stefanov, M. Nanayakkara, C. Y. Challacombe, P. Y. Peng, W. Ayala, M. W. Chen, J. L. Wong, E. S. Andres, R. Replogle, R. L. Gomperts, D. J. Martin, J. S. Fox, D. J. Binkley, J. Defrees, A. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, J. A. Pople, Gaussian Inc., Pittsburgh, PA, 1995.
- [11] a) W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56,
 2257; b) P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213;
 c) M. S. Gordon, Chem. Phys. Lett. 1980, 76, 163.
- [12] C. Møller, M. S. Plesset, Phys. Rev. 1934, 46, 618.
- [13] a) R. Krishnan, J. A. Pople, Int. J. Quantum Chem. 1978, 14, 91; b) R.
 Krishnan, M. Frisch, J. A. Pople, J. Chem. Phys. 1980, 72, 4244.
- [14] a) W. Kutzelnigg, U. Fleischer, M. Schindler, NMR Basic Princ. Prog. 1990, 23, 165; b) W. Kutzelnigg, J. Chem. Phys. 1982, 76, 1919.
- [15] a) V. G. Malkin, O. L. Malkina, L. A. Eriksson, D. R. Salahub in Modern Density Functional Theory (Ed.: J. M. Seminario, P. Politzer), Elsevier, Amsterdam, 1995.
- [16] Compare the C_a – C_β bond length in cumulated ylides: H. Burzlaff, R. Haag, E. Wilhelm, H. J. Bestmann, *Chem. Ber.* **1985**, *118*, 170.
- [17] G. Rauhut, T. Clark, J. Comput. Chem. 1993, 14, 503; B. Beck, G. Rauhut, T. Clark, ibid. 1994, 15, 1064.
- [18] PSI88: a) D. L. Severance, W. L. Jorgensen, Department of Chemistry, Yale University, New Haven, CT 06511, USA, 1988; b) modified by H. Roth.
- [19] P. J. Stang, C. M. Critell, J. Org. Chem. 1992, 57, 4305.
- [20] 13 C enrichment to 25% at both C_{α} and C_{β} , although in different molecules. The synthesis of the 13 C-labeled compounds will be described elsewhere.
- [21] T. A. Albright, W. Freeman, E. E. Schweizer, J. Am. Chem. Soc. 1975, 97, 2946.

- [22] H. J. Bestmann, L. Kisielowski, Chem. Ber. 1983, 116, 132.
- [23] Compare the P-C_a coupling in phosphacumulene ylides: H. J. Bestmann, G. Schmidt, Chem. Ber. 1980, 113, 3369.
- [24] H. J. Bestmann, K. Roth, Tetrahedron Lett. 1981, 22, 1181.
- [25] NMR data for the previously unknown (*Z*)-**11a** (X = Cl): ¹H NMR (400 MHz, CDCl₃, RT): δ = 7.62 (dd, 1 H, ²*J*(P,H) = 16.17 Hz, ³*J*(H,H) = 8.85 Hz, H on C_a), 7.86 (m, 15 H, aromatic H), 8.03 (dd, 1 H, ³*J*(P,H) = 35.09 Hz, ³*J*(H,H) = 8.85 Hz, H on C_β); ¹³C NMR (100.4 MHz, CDCl₃, RT): δ = 111.90 (d, ¹*J*(P,C) = 91.5 Hz, C_a), 117.21 (d, ¹*J*(P,C) = 91.6 Hz, *ipso*-C), 130.45 (d, ³*J*(P,C) = 13.7 Hz, *meta*-C), 133.33 (d, ²*J*(P,C) = 12.2 Hz, *ortho*-C), 135.32 (d, ⁴*J*(P,C) = 3.1 Hz, *para*-C), 147.83 (d, ²*J*(P,C) = 7.6 Hz, C_β).
- [26] Review of alkylidene carbenes: P. J. Stang, Chem. Rev. 1978, 78, 283; Acc. Chem. Res. 1982, 15, 348.
- [27] Review: I. Ugi, Angew. Chem. 1962, 74, 9; Angew. Chem. Int. Ed. Engl. 1962, 1, 8.
- [28] Cf. H. J. Bestmann, G. Schade, H. Lütke, T. Mönius, Chem. Ber. 1985, 118, 2640.
- [29] **24**: colorless crystals, m.p. $203-205\,^{\circ}\mathrm{C}$ (decomp); IR: $\tilde{v}=2090\,\mathrm{cm}^{-1}$ (C=C); $^{1}\mathrm{H}$ NMR (60 MHz, [D₃]pyridine): $\delta=7.1-8.0$ (m, 30 H, aromatic H); $^{13}\mathrm{C}$ NMR (100.4 MHz, [D₅]pyridine): $\delta=71.3$ (d, $^{1}J(P,C)=186.2\,\mathrm{Hz}$, C_{α}), 122.3 (d, $^{1}J(P,C)=99.2\,\mathrm{Hz}$, ipso-C, P-phenyl), 124.4 (s, para-C, B-phenyl), 127.3 (s, ortho-C, B-phenyl), 130.3 (d, $^{3}J(P,C)=13.7\,\mathrm{Hz}$, meta-C, P-phenyl), 133.3 (d, $^{2}J(P,C)=12.2\,\mathrm{Hz}$, ortho-C, P-phenyl), 134.8 (d, $^{4}J(P,C)=3.0\,\mathrm{Hz}$, para-C, P-phenyl), 135.5 (s, meta-C, B-phenyl), 157.6 (s, ipso-C, B-Phenyl); $^{31}\mathrm{P}$ NMR (161.7 MHz, [D₅]pyridine): $\delta=0.04$; $^{11}\mathrm{B}$ NMR (128 MHz, $C_{6}D_{6}$): $\delta=-11.2$.

A Three-Dimensional Framework with Accessible Nanopores: RbCuSb₂Se₄·H₂O**

Jason A. Hanko and Mercouri G. Kanatzidis*

The synthesis of nonoxidic chalcogen-based open frameworks is motivated by the prospect of obtaining interesting semiconducting analogues of zeolites.[1] Planned syntheses of open-framework structures based on germanium and tin sulfides were reported in 1989.^[2] This discovery led to a rapid expansion in this area, and compounds such as [Et₄N]₂Cu₂- Ge_4S_{10} ,^[3] $[Me_4N]_2MGe_4S_{10}$ $(M=Mn,^{[4,5]}Fe,^{[5,6]}Co,^{[5]}Zn^{[5]})$, and $[Me_4N]_6(Cu_{0.44}Ge_{0.56}S_{0.73})Ge_4S_{10}^{[7]}$ were prepared. Hydrothermal synthesis is a common route to these materials. Solidstate lattices can be generated by the self-assembly of the appropriate molecular building blocks in the presence of organic template ions. Using this approach, we have demonstrated that $[EQ_3]^{3-}$ (E = As, Sb; Q = S, Se) units are versatile building blocks from which interesting compounds such as $KBi_{3}S_{5},^{[8]} \quad [Ph_{4}P]InSe_{12},^{[9]} \quad [Me_{4}N]HgAs_{3}S_{6},^{[10]} \quad [Me_{4}N]Rb BiAs_6S_{12}$,^[11] and $[Co(en)_3]CoSb_4S_8$, [12] can be made. A tran-

[*] Prof. M. G. Kanatzidis, J. A. Hanko
Department of Chemistry and
Center for Fundamental Materials Research
Michigan State University
East Lansing, MI 48824 (USA)
Fax: Int. code + (1)517353-1793
E-mail: kanatzid@argus.cem.msu.edu

[**] Financial support from the Petroleum Research Fund (administered by the American Chemical Society) and from the National Science Foundation is gratefully acknowledged. M.G.K. is a Camille and Henry Dreyfus Teacher Scholar (1993–1998). This work made use of the SEM facilities of the Center for Electron Optics at Michigan State University.

sition metal is not necessary for the formation of extended structures. Several of these germanium,^[13] tin,^[14-22] and antimony sulfide^[23, 24] frameworks are also accessible by condensation of molecular building blocks.

Here we report on the new three-dimensional material RbCuSb₂Se₄·H₂O (1), which was prepared by heating CuCl with Rb₃SbSe₃^[25] and Ph₄PBr in H₂O at 130 °C. The black needlelike crystals are insoluble in common organic solvents. Compound 1 has a three-dimensional framework in which tetrahedral Cu centers are connected to both pyramidal SbSe₃ and square-pyramidal SbSe₅ units. [26] The novel feature of this framework is the presence of large channels running along the [010] direction (Figure 1). The channels have an irregular

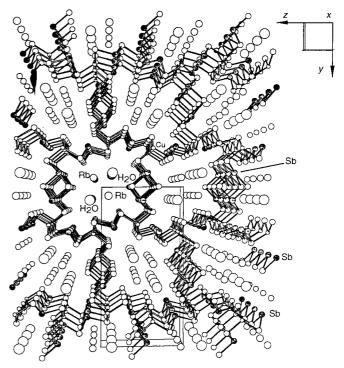


Figure 1. View of the structure of $\bf 1$ along the b axis showing the channels occupied by the rubidium centers and water molecules.

cross section with dimensions of $11.29 \times 10.52 \times 8.16$ Å (Figure 2). Another unique feature is the presence of two kinds of $[SbSe_2]_n^{n-}$ chains which run parallel to the channels. One is a single $[SbSe_2]_n^{n-}$ chain of corner-sharing pyramids in which all of the terminal Se centers on the same side; the Sb-Se bond lengths range from 2.556(4) to 2.726(3) Å (av 2.66(5) Å), and the Se-Sb-Se angles from 95.5(1) to 99.1(1)°. The other contains associated double $\{[SbSe_2]_2\}_{n}^{2n-}$ chains with Sb-Se bond lengths in the range 2.585(4) - 2.972(3) Å (av 2.83(8) Å) and Se-Sb-Se angles between 84.8(1) and 173.9(1)°. Such double chains are also found in Sb₂Se₃.^[27] Figure 2 highlights the two different $[SbSe_2]_n^{n-}$ chains. The $[SbSe_2]_n^{n-}$ single chains are connected to the Cu atoms to give corrugated CuSbSe₂ sheets composed of alternating rows of tetrahedrally coordinated Cu and pyramidally coordinated Sb units. These sheets are held together by the $\{[SbSe_2]_2\}_{n}^{2n-}$ double chains, which complete the tetrahedral coordination sphere of the Cu atoms